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Abstract: Expandable sand screens are a sand control system, which is used to control the ingress 

of solids in oil and gas reservoirs with weak and unconsolidated formations. There are two 

different variations of expandable screens; a system based on a slotted basepipe which are easy to 

expand compliant to the formation but is relatively low in strength and a system based on a drilled 

basepipe which is very strong but is more difficult to expand compliantly.  

 

FEA has been used to model the slotted basepipe type to better understand the interaction of the 

expanded screen with the rock formations.   Initially the entire structure of the screen was 

modelled and the results compared to physical test data.  The simulations fitted the test data very 

well, with run times of the order of a few hours depending on details of the simulation.  The full 

simulations were adequate for research purposes but for routine screening of applications the 

models were simplified.  An equivalent representation of the screen was developed to match the 

gross behaviour of the screen in terms of stiffness and yield. This approach was very 

computationally efficient and allowed rapid investigation of formation screen interactions. 

 

The model was used to study the effects of formation screen interactions in inclined wellbores, 

through multiple rock layers.  The model is also routinely used to study new applications for 

potential problems. 

 

Keywords: include Geomechanics, Soil-Structure Interaction and Wellbore  

1. Introduction 

Expandable sand screens (ESS) are a relatively new sand control product with approximately 800 
installations worldwide over all vendors.  They come in 2 different types; either a system based on 
a slotted basepipe or a system based on a drilled basepipe. The slotted basepipe system is the most 
common, with around 600 installations since 1997.  The advantage of the slotted basepipe system 
is that it is relatively easy to expand into full contact with a wellbore which typically varies in 
shape and diameter, to give a truly compliant system.  This has advantages both in well 
productivity, sand retention capability and reliability (Hembling et al 2008). The drilled basepipe 

                                                           
 Registered trademark of Weatherford 
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system on the other hand is more difficult to expand especially in an irregular wellbore, however it 
is stronger. 

Initially the relatively low strength of the slotted basepipe expandable sand screen was a concern.  
However initial testing with small scale systems showed that the ESS greatly strengthened the 
wellbore.  The question then arose as to how the full size ESS would react. To address this a joint 
industry project (JIP) was undertaken. This study measured the deformation of a full sized ESS in 
a wellbore in weak sands and sandstones.  The experiments were performed in a large pressure 
vessel or poly-axial cells which could recreate the high stresses experienced in a downhole 
situation. The results of these tests showed that for any reasonable reservoir material there was 
very little deformation of the ESS.  The only situation where large deformations were experienced 

were for very low friction angle shales.  

 

 

Figure 1 Details of the construction of the ESS 

Simple analytical models of the ESS were also developed (Abbassian et al  2002, Jones et al 2005) 
which could be used as design tools. The JIP tests were also used to calibrate and verify the simple 
models.  FEA models were also used to analyze the results of the JIP tests and for application 
qualification (Willson et al 2002). One important result of early FEA modeling was that the 
deformation measured in the geometry of the JIP tests was likely to over estimate that found in the 
field situation for the same rock material and stress change. 

Weatherford analyzes every openhole ESS installation to determine how much deformation will 
take place during the projected life of the installation. This requires a knowledge of the downhole 
stress conditions, the formation strength and the projected production history of the well.  Initially 
a simple analytical model was used (Jones et al 2005). Recently FEA has been used for this 
analysis (Jones and Watson 2008).  The FEA model allows more complex formation screen 
interactions to be analyzed. This work details the development of a simplified equivalent ESS 
model and its use in determining the deformation of the ESS in an inclined wellbore in a sand 
shale sequence with varying thicknesses of weak shale. 
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2. Development and Qualification of an Equivalent ESS Model. 

The ESS is constructed in 3 parts (Figure 1), a slotted basepipe, a Dutch twill filtration weave and 
a high open area outer shroud. The slotted basepipe contributes most of the strength of the ESS,  it 
is normally made from 316L stainless steel and slotted using a high pressure garnet/water jet.  The 
filtration weave is again made of 316L and is designed to retain the formation sand, it does not 
have a significant contribution to the strength of the system and is neglected in the analysis. The 
outer shroud is punched from a flat sheet of 316L, it is 1.5mm thick and has a significant 
contribution to the strength of the system.   

FEA models of the ESS have been built over the last couple of years (Jones & Watson 2008). 
These have successfully modeled the behavior of the ESS in a wide variety of loading conditions 
and are used extensively as a design tool. In a typical model the slotted basepipe may have around 
33,000 elements and the shroud 100,000 elements C3D8R.  Figure 2 shows the complexity of the 
meshing on the shroud. Simulating the expansion of the ESS and subsequent loading to collapse 
can take several hours on a powerful quad core desktop.  This is more than adequate for a design 
tool but is rather slow for an analysis tool for screening multiple application scenarios.  Also there 
is a need for the analysis to be done quickly on a laptop in remote locations around the world.  

 

Figure 2 Details of ESS Construction Showing Complexity of the Meshing on the shroud 

 

A simple representation of the ESS was developed. The equivalent ESS consisted of a plain pipe 
with the ID/OD dimensions of the expanded ESS. In the case of the 5 ½” ESS the OD was 8 ½” 
and the ID was 7.984.  The Elastic and plastic properties of the material were adjusted to fit the 
hydraulic collapse data and FEA models of the whole slotted system. The results of the fit were 
very good and are shown in Figure 3. 
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Figure 3 Comparison between the measured deformation, the full scale simulation and the 

equivalent simulation.  

To further test the veracity of the equivalent ESS approach, a model was built to simulate some 
large scale testing of the ESS in a thick walled cylinder (TWC) of rock.  In this testing a section of 
5 ½” ESS was expanded into contact with the inner bore of the TWC of weak sandstone. The 
expansion was performed with the TWC installed in a large pressure vessel.  The large stresses 
were applied to the outside and end surfaces of the TWC to simulate deep burial in the earth.  The 
vessel is able to apply stresses which simulate burial to between 15000 and 20000ft.  The applied 
stresses caused failure of the weak sandstone initially at the wellbore, then progressively through 
the entire section of the TWC.  The failed rock pushed on the ESS causing deformation.  The 
deformation experience by the ESS is shown in Figure 4 on two perpendicular axes.                    
The deformation starts at around 500psi applied external pressure and accelerates rapidly, 
attaining 1” deformation at 3000psi.  The FEA gives a very good fit to the experimental data. 
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Figure 4 Deformation of 5 1/2" ESS in a large cylinder of weak sandstone, with prediction 

using  the equivalent ESS model. 

 

3. Oilwell lifecycle and re-circularization 

The next stage of the project was to analyze the deformation of the ESS through-out the entire 
lifecycle of the well.  When a hole is drilled through a rock at depth, the removal of the material 
causes a concentration of stress in the formations close to the wellbore. Basically the rock material 
close to the wellbore has to carry the stresses which were carried by the material which has been 
drilled out.  Elastic solutions exist to quantify the stresses around the hole.  They show that the 
stresses can be very large and will cause some failure of the near wellbore formations especially if 
they are weak. The hole is drilled by a drillbit which is flushed by a drilling fluid which is 
designed to have a static pressure greater than the reservoir pressure.   The drilling fluid has a 
complex design and performs many functions. It keeps the hydrocarbons in place in the reservoir, 
lifts rock cuttings to the surface and stabilizes weak formations. 

When the drillbit drills past a given weak formation there is some rock failure and relaxation of 
stress.  This causes the wellbore wall to move into the centre of the wellbore slightly to give a 
“tight hole”. This extra material is either reamed off immediately by gauge cutters on the bit or is 
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reamed later. In any event the drillbit must remove the displaced material to be able to be 
withdrawn from the hole. 

In these FEA simulations of the drilling process, the starting point is a block of rock with a hole.  
The initial stresses and mud over balance are applied.  This causes some movement of the 
wellbore wall.  If the rocks are very weak the movement can be very large.  In the modeling the 
hole must be re-circularized so as to physically represent the finished drilling process.  

This was done by having two separate models. The first model was loaded to produce the stressed 
and deformed state.  The second model, essentially a copy of the first, then has the solution from 
the first model mapped over it, i.e. it is undeformed but already in the loaded/stressed state. This 
used the keyword *map solution.  The second model then carries on with further loading steps. 
This process led to the desired circular wellbore at the end of the initial loading stage. However, 
due to a small degree of artificial strain whilst mapping the first model solution onto the second 
undeformed model, there was a small change in the von mises stress output values, typically 5%. 
The slight changes were considered acceptable as the benefits of attaining the desired re-
circularized wellbore far outweighed the minor inconsistency that was observed. The map solution 
method is not directly executable within CAE, it needs to be done using the Keywords Editor.  
The models are executed from the command line.  The method for performing the recircularisation 
is detailed in the appendix. 

Once the wellbore has been re-circularized the next stage is to simulate the production of fluids 
from the formations.   The production of fluids impacts on rock failure by the effects of depletion 
and drawdown.  Depletion is the gradual reduction of fluid pressure in the reservoir caused by the 
removal of the hydrocarbon fluids. Drawdown is a pressure difference between the reservoir and 
the wellbore which causes the fluids to flow from the reservoir into the wellbore.   

4. Vertical-Horizontal Well Application Screening Tool 

One of the aims of the modeling was to provide a tool for screening potential applications for 
excessive deformation.  Excessive formation induced deformation of the ESS is undesirable 
because it restricts access to the well and might cause a loss of sand control. Extensive testing in 
the joint industry project showed that the ESS could withstand large deformations without 
collapsing or losing the ability to control the sand. A limit of 20% deformation was set based on 

the results of the testing. The 20% value includes a large safety factor. 

Models were built for an actual application.  The well parameters are shown below in Table 1. The 
material properties are shown in Table 2 in the sandstone column.  The sandstone material 
properties came from a suite of triaxial tests done on actual core. This sandstone is very weak 

Figure 5 shows the results of simulation done as part of the application screening process for this 
well, plotted as deformation during the life cycle of the well. The four parts of the well life cycle 
are shown.  Firstly the initial stresses are applied to the rock mass containing the wellbore, and 
then the mud overbalance is removed. At this point the well can start to flow. The pore pressure 

reduces due to depletion and there will be some drawdown. 
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Two different types of simulations were performed, in each case C3d8RP pore pressure elements 
were used. The lower curve shows the deformation for a non re-circularized wellbore. After the 
initial stresses are applied there is a 1.5mm reduction in ESS ID.   For the re-circularized hole the 
deformation is zero.  When the mud over balance is removed the near wellbore formations weaken  
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Figure 5 Deformation of the wellbore with and without re-circulatization 

 

Figure 6 Quarter symmetry model used in the simulations 
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and load the ESS.  During depletion from an initial pore pressure of 19.2MPa to a pore pressure of 
6.9Mpa the change in effective stress causes further deformation.  At the end of the depletion the 
ESS in the non re-circularized simulation has deformed by around 25% which is out with limits.  
The re-circularized wellbore has deformed by 14% which is well with the limits.  Even when an 
additional 1MPa drawdown is applied to the rock the deformation is still with in the limit at 18%. 

Figure 6 shows the simple quarter symmetry model used in the simulations. Plotted on the model 
is pore pressure.  A pore pressure boundary condition was set on the outside of the model and a 
lower pressure boundary condition at the wellbore. This causes some fluid flow to take place. 

The quarter symmetry model used here was very simple.  More complexity could be added to 
represent more accurately the complex processes which take place in the downhole environment. 

 

Depth 1900m 

Vertical Stress 35MPa 

Horizontal stress 32MPa 

Initial reservoir pressure 19.2MPa 

Mud overbalance 3.5MPa 

Table 1Well parameters 

 

Rock Sandstone Shale 

Density 2500kg/m3 2500kg/m3 

Young’s Modulus 2069MPa 1379MPa 

Poisson’s Ratio 0.16 0.16 

Friction Angle 20 degrees 13 degrees 

Dilatancy Angle 0 degrees 0 degrees 

Table 2 Material properties of the sandstone and shale used in the simulations 
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5. Inclined Wellbore in a Sand Shale Sequence 

The modeling shown in the previous section shows how the ESS deforms in a well in a single rock 
type in either a horizontal or vertical well.  Actual wells are much more complex. They can be 
inclined at any angle and normally more than one rock type is present. To address these issues an 
inclined wellbore model with multiple layers was developed. This was used to address the effects 
of inclination, interfaces between different rocks and different rock types. 

One of the rock types chosen to investigate was a weak shale.  Shales are the most common rock 
type encountered in oil and gas well drilling, accounting for roughly 60% of drilled footage. Exact 
definitions of what a shale is varies, but they are typically very fine grain <4 microns with very 
low permeability, they have a high percentage of clay minerals such as montmorillonite and illite, 
they are fissile and weak with low friction angles.  Mechanically, shales are very complex, they 
are highly anisotropic, they tend to exhibit creep, and due to their low permeability pore pressure 
equilibrium takes a very long time.  As a consequence of this, deformation tends to be undrained. 

In drilling they are responsible for the majority of hole stability problems. For the ESS there is 
evidence that shales are responsible for large deformations both in laboratory testing and in the 
field. 

Figure 7 shows the setup of the block.  The block dimensions were 5m x 5m by 3m deep. The 
block was partitioned to allow for finer meshing closer to the wellbore (Figure 8).  The block was 
also in 3 sections to which different material properties were assigned. The central section was 
further split into 5 sections. This allowed shale layers from 0.2m to 3m to be modeled. 

Three sets of simulations were run. A bare 8 ½” wellbore with 0.2 – 1 m layers of shale.  A 8 ½”  
wellbore with a 5 ½” ESS installed expanded out to 8 ½” OD and the same wellbore with a 7” 
ESS installed expanded out to 8 ½” OD. The material properties are shown in Table 2.  The 
stresses used are shown in Table 1.  In each case effective stresses were used, no permeability 
effects were used; this may over-estimate the deformation in the shale.  The shale used in the 

simulations was also very weak with a very low friction angle. 

The modeling and analysis shows several interesting effects. Figure 9 shows a close-up of the 
central shale layer.  For the base wellbore there is much more deformation in the shale than the 
sand on either side, this is a function of the higher friction angle in the sand even although the 
cohesion of the sand is lower. The sand appears to support or restrain the shale at the interface, so 
that the deformation of the shale is less close to the sand.  Figure 10 shows the deformation of the 
central shale as a function of shale layer thickness. The deformation decreases as the shale layer 
becomes thinner due to the support from the surrounding sand. 

Figure 11 shows the deformation of the bare wellbore, the wellbore supported by a 5 ½” ESS and 
finally the wellbore supported by the stronger 7” ESS. The results show that the 5 ½” ESS can 
barely cope with the loading by the shale in that it is over the 20% limit for longer shale sections 
but the stronger 7” undergoes much less deformation.  In this case the stronger 7” ESS would be 

the system of choice for the conditions in this well. 
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Figure 7 Inclined wellbore in a 5m x 5m x 3m block. 

 

 

Figure 8 Detail of applied mesh around centre of block 

 

 

Figure 9 Details of the deformation in the Sandstone and the Shale 
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Figure 10 Deformation in the central shale as a function of shale layer thickness. 
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Figure 11 45 Degree Wellbore in a 5m (w) x 5m (d) x 3m (h) Block of Weak Sandstone at 

Top and Bottom with a Varying thickness of Weak Shale in Middle 
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Figure 11 graphically shows the different deformations by both thickness of middle shale section 
and then the addition of 5-1/2" and 7" ESS. The two thicknesses of shale are 0.2m and 1.0m. The 
original 8.5" OD wellbore profile is highlighted in the four images. 

 0.2m shale section deformation 18mm (radially) 17% deformation 
 1m shale section  deformation 32mm (radially) 29% deformation 
 1m shale with 5-1/2" ESS deformation 22.9mm (radially) 21% deformation 
 1m shale with 7" ESS deformation 17.2mm (radially) 16% deformation 
 

 
 

Figure 11 Varying thickness of Weak Shale (top two images)                                                       

and the addition of 5-1/2" ESS (bottom left) and 7" ESS (bottom right). 
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6. Conclusions 

Abaqus is now used extensively within Weatherford as a design tool, as an application screening 
tool and as a research tool. Full scale simulations of the ESS are routinely performed, primarily for 
the purpose of product enhancement.  These simulations are relatively time consuming due to the 
complexity of the structure and the number of mesh elements needed to describe it adequately. A 
simplified representation of the ESS was developed to use in a rapid application screening tool. 
This provides results very rapidly. The simulations fit the available experimental data. The 
screening tool is currently being used to screen future applications. 

The equivalent ESS representation has also been used to model more complex well architectures 
such as an inclined well crossing multiple layers. This model shows many interesting features and 
has answered such questions as what happens at sand shale interfaces and how does the 
deformation vary with shale layer thickness. 
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8. Appendix 

A brief guide for Mapping a solution from a deformed Model onto an undeformed Model 

 

Model Creation; 
Create a model (call it middle) with all the parts and steps that are required in the whole process. 
Within the first two steps, initial and first-loading, all the parts/faces require encastred; 
this will stop any unwanted movement at the mapping stage. This encastre then needs to be made 
inactive in the later steps. 

In the Keywords editor (not available in CAE), the phrase *map solution, step=1  needs to be 
added immediately before the first STEP. 
Copy the model middle, save as start. 
Within start , the later steps can be deleted, it is just the initial and first-loading steps that are 
required. 
Also within start , delete the map solution line that was added by the keywords editor in middle. 
Remove the encastre boundary conditions to allow the necessary movement when loads are 
applied. 
A restart request has to be made for the end of the step. This writes an mdl file, which is 
(apparently) required later during the DOS prompt analysis run. 
 

Job Creation; 
A job is run for the start model. This produces the desired stress state and has a deformed 
wellbore. 
For the middle model, a job is created but not run; a write input is performed to generate an input 
deck 
This middle.inp is saved as final.inp (either from DOS or Win.Explorer) 
 

Job Execution; 
The DOS prompt command line is then used to facilitate communication between input decks; 
abaqus job=final oldjob=start (other commands can also be added, such as cpus=4 double ... etc). 
 

Job Analysis; 
Within CAE, a new job is created (final), but the source is an input file, final.inp 
This allows the user to view the results for final as usual. 
At the end of the first-loading step in final, the wellbore should still be undeformed and it is worth 
checking that the stresses at the end of this first step in final do indeed match those at the end of 
the job start, as that is what should have been carried out by the instructions above! 
 

 


